Markov localization

In Markov localization the belief is a probability distribution over possible positions, and is using Bayes rule and convolution to update the belief whenever the vehicle senses or moves.

The posterior probability P(x|y) will be:

    \[ P(x|y)=\frac{P(y|x)*P(x))}{P(y|x)} \]

where P(y|x)  is the likelihood

Or

(1)   \begin{equation*}  P_{i}(x|y)=\frac{P_{i}(y|x)*P_{i}(x))}{P_{i}(y|x)} \end{equation*}

In (1) the ….